

Sustainable Nanotechnology Research Facilities

> Curt D. Finfrock, AIA October 2002

Nanoscale Science

- Materials
- Biotechnology
- Electronics
- Sensors (MEMS)

Nanotechnology Facility Characteristics

- Clean Laboratories Class 1-100,000
- Multi- Disciplinary Science through Collaboration
- Exceptionally High Energy Demands
- Construction Costs 3 5 Times
 Conventional Laboratory Costs
- Frequent Rate of Equipment & Utility
 Modifications

Durham , NC

October, 2002

Cross Section: Microsystems and Engineering Science Application (MESA)

Bay and Chase Clean Laboratory

Bay and Chase Clean Laboratory

LABORATORIES FOR THE 21ST CENTRY

Durham , NC October, 2002

m+w zande

>>>

Durham , NC

October, 2002

Longitudinal Section: Albany Nanotech SUNY

Ballroom Clean Laboratories

Sustainable Sites

Y ? N P1	Erosion & Sedimentation Control	Required						
Y ? N 1	Site Selection							
Y ? N 2	Urban Redevelopment							
Y ? N 3	Brownfield Redevelopment							
Y ? N 4.1	Alternative Transportation, Public Transportation Acce	SS						
Y ? N 4.2	Alternative Transportation, Bicycle Storage & Changing Rooms							
Y ? N 4.3	Alternative Transportation, Alternative Fuel Refueling Stations							
Y ? N 4.4	Alternative Transportation, Parking Capacity							
Y ? N 5.1	Reduced Site Disturbance, Protect or Restore Open Space							
Y ? N 5.2	Reduced Site Disturbance, Development Footprint							
Y ? N 6.1	Stormwater Management, Rate or Quantity							
Y ? N 6.2	Stormwater Management, Treatment							
Y ? N 7.1	Landscape & Exterior Design to Reduce Heat Islands, Non-Roof							
Y ? N 7.2	Landscape & Exterior Design to Reduce Heat Islands, Roof							
Y ? N 8	Light Pollution Reduction							
Y ? N 9.1	Safety and Risk Management, Air Effluent							
Y ? N 9.2	Safety and Risk Management, Water Effluent							

- Geographic location may have a significant impact on the clean facility design concept and cost.
- Environmental Safety and Health (ES&H) participation is essential throughout the design process.

Water Efficiency

Y ? N P1	Laboratory Equipment Water Use	Required
Y ? N 1.1	Water Efficient Landscaping, Reduce by 50%	
Y ? N 1.2	Water Efficient Landscaping, No Potable Use or No Irrigation	on
Y?N2	Innovative Wastewater Technologies	
Y ? N 3.1	Water Use Reduction, 20% Reduction	
Y ? N 3.2	Water Use Reduction, 30% Reduction	
Y ? N 4.1	Process Water Efficiency, Document Baseline	
Y ? N 4.2	Process Water Efficiency, 30% Reduction	

- Substantial utility efficiencies can be achieved by understanding equipment requirement and user work habit.
- European laboratories offer intriguing lessons for efficiency and water conservation.

Energy & Atmosphere

Υ	?	Ν	P1	Fundamental Building Systems Commissioning	Required
Υ	?	Ν	P2	Minimum Energy Performance	Required
Υ	?	N	P3	CFC Reduction in HVAC&R Equipment	Required
Υ	?	N	P4	Assess Minimum Ventilation Requirements	Required
Υ	?	N	1.1	Optimize Energy Performance, 5%	
Y	?	N	1.2	Optimize Energy Performance, 10%	
Y	?	N	1.3	Optimize Energy Performance, 15%	
Υ	?	N	1.4	Optimize Energy Performance, 20%	
Υ	?	N	1.5	Optimize Energy Performance, 25%	
Υ	?	N	1.6	Optimize Energy Performance, 30%	
Υ	?	N	1.7	Optimize Energy Performance, 35%	
Υ	?	N	1.8	Optimize Energy Performance, 40%	
Y	?	N	1.9	Optimize Energy Performance, 45%	
Υ	?	N	1.10	Optimize Energy Performance, 50%	
Υ	?	N	2.1	Renewable Energy, 5000 BTU/sf	
Y	?	N	2.2	Renewable Energy, 10000 BTU/sf	
Υ	?	N	2.3	Renewable Energy, 20000 BTU/sf	
Υ	?	N	3	Additional Commissioning	
Υ	?	N	4	Ozone Depletion	
Υ	?	N	5	Measurement & Verification	***
Y	?	N	6	Green Power	
Y	?	N	7.1	Energy Supply Efficiency, 10%	
Υ	?	N	7.2	Energy Supply Efficiency, 20%	
Υ	?	N	7.3	Energy Supply Efficiency, 30%	
Υ	?	N	7.4	Energy Supply Efficiency, 40%	
Υ	?	N	7.5	Energy Supply Efficiency, 50%	
Υ	?	N	8	Improve Laboratory Equipment Efficiency	
Υ	?	N	9	Right-size Laboratory Equipment Load	

- Energy performance
 opportunities will be dependent
 on cleanroom type and
 purpose.
- Renewable energy is not a likely priority unless supplemental funding is available.
- Limited options for laboratory equipment selection.
- 20% average equipment utilization rate.

LABORATORIES FOR THE 21ST CENTRY Durham , NC October, 2002

Materials & Resources

2 N P1 Storage & Collection of Recyclable

I ? N PI	Storage & Collection of Recyclables	equirea
Y ? N P2	Hazardous Material Handling Re	equired
Y ? N 1.1	Building Reuse, Maintain 75% of Existing Shell	
Y ? N 1.2	Building Reuse, Maintain 100% of Shell	
Y ? N 1.3	Building Reuse, Maintain 100% Shell & 50% Non-Shell	
Y ? N 2.1	Construction Waste Management, Divert 50%	
Y ? N 2.2	Construction Waste Management, Divert 75%	
Y ? N 3.1	Resource Reuse, Specify 5%	
Y ? N 3.2	Resource Reuse, Specify 10%	
Y ? N 4.1	Recycled Content, Specify 25%	
Y ? N 4.2	Recycled Content, Specify 50%	
Y ? N 5.1	Local/Regional Materials, 20% Manufactured Locally	
Y ? N 5.2	Local/Regional Materials, of 20% Above, 50% Harvested Local	ly
Y?N6	Rapidly Renewable Materials	
Y ? N 7	Certified Wood	
Y?N8	Chemical Resource Management	

- Chemical / hazardous material handling is a key safety and code issue.
- Unique building type and advanced technology present numerous obstacles.

Indoor Environmental Quality

Y ? N P1	Minimum IAQ Performance	Required
Y ? N P2	Environmental Tobacco Smoke (ETS) Control	Required
Y ? N P3	Laboratory Ventilation	Required
Y ? N 1	Carbon Dioxide (CO2) Monitoring	****
Y ? N 2	Increase Ventilation Effectiveness	**
Y ? N 3.1	Construction IAQ Management Plan, During Construction	***
Y ? N 3.2	Construction IAQ Management Plan, Before Occupancy	**
Y ? N 4.1	Low-Emitting Materials, Adhesives & Sealants	
Y ? N 4.2	Low-Emitting Materials, Paints	
Y ? N 4.3	Low-Emitting Materials, Carpet	***
Y ? N 4.4	Low-Emitting Materials, Composite Wood	***
Y ? N 5	Indoor Chemical & Pollutant Source Control	**
Y ? N 6.1	Controllability of Systems, Perimeter	***
Y ? N 6.2	Controllability of Systems, Non-Perimeter	
Y ? N 7.1	Thermal Comfort, Comply with ASHRAE 55-1992	***
Y ? N 7.2	Thermal Comfort, Permanent Monitoring System	****
Y ? N 8.1	Daylight & Views, Daylight 75% of Spaces	***
Y ? N 8.2	Daylight & Views, Views for 90% of Spaces	**
Y?N 9.1	Indoor Environmental Safety, CFD Modeling	
Y?N9.2	Indoor Environmental Safety, Fumehood Commissioning	
Y?N9.3	Indoor Environmental Safety, Window and Door Alarms	

- Establishing, maintaining and monitoring cleanliness is paramount.
- Cleanroom panel off gassing tend disturb process equipment operation.
- Daylighting is controversial in cleanroom and lab areas.
- Environmental safety is a primary planning issue.

Innovation & Design Process

- ? N 1.1 Innovation in Design: Specific Title
- ? N 1.2 Innovation in Design: Specific Title
- Y ? N 1.3 Innovation in Design: Specific Title
- Y ? N 1.4 Innovation in Design: Specific Title
- ? N 2 LEED™ Accredited Professional

- Fertile ground for creativity especially in HVAC and process engineering.
- Mini environment alternatives.
- Greater emphasis should be placed on initial costs / operating costs analyses.
- Integrated user / industrial engineer / facility engineer / architect approach.

Project Totals

Project Totals	30 - 36	47 - 54	
Innovation & Design Process	3 - 4	4 - 5	
Indoor Environmental Quality	13 - 14	16 - 17	
Materials & Resources	3 - 4	4 - 5	
Energy & Atmosphere	2 - 3	11 - 13	
Water Efficiency	2 - 3	3 - 4	
Sustainable Sites	7 - 8	9 - 10	
	LEED	LEED + EPC	

Center for Nanoscale Materials

LABORATORIES FOR THE 21ST CENTRY

Durham , NC

October, 2002

Site Plan

Durham , NC

October, 2002

Ground Floor Plan

Durham , NC

Cross Section Through Lobby, Cleanroom, and Support

Cross Section Through Office, Labs, and Support

Durham , NC October, 2002

Exterior View

Alternative Finish Floor System

LABORATORIES FOR THE 21ST CENTRY

Durham , NC

October, 2002

Durham , NC

October, 2002

October, 2002

Ground Floor Plan

Durham , NC

October, 2002

Section

Center for Nanophase Materials Sciences

Center for Nanophase Materials Sciences

Process Bay Enclosure

Process Equipment

- gaipinont

Cleanroom Supply Air Systems

Cleanroom Exhaust Systems

Cleanroom Electrical System

Cleanroom Piped Utility Systems

Cleanroom Composite Systems

